PHYSICAL REVIEW E

VOLUME 47, NUMBER 5

MAY 1993

Generalized Forster-Dexter theory of photoinduced intramolecular energy transfer

S. H. Lin and W. Z. Xiao
Department of Chemistry and Center for the Study of Early Events in Photosynthesis,
Arizona State University, Tempe, Arizona 85287-1604

W. Dietz
Department of Physics, Technical University of Munich, 8046 Garching, Germany
(Received 12 June 1992)

In this paper, we generalize the Forster-Dexter theory to treat photoinduced electronic energy
transfer for a system in dense media and for an isolated system (i.e., a system in the collision-free condi-
tion). Instead of expressing the rate of energy transfer in terms of spectral overlap, we obtain the expres-
sion of the energy-transfer rate constant by evaluating a Fourier integral using the saddle-point method.
In this way, the energy-gap dependence and the effect of temperature and the isotope effect on the energy
transfer can be easily studied. The effect of bridge groups connecting between donor and acceptor on the

energy transfer is also studied.

PACS number(s): 82.20.Rp, 31.15.+q, 31.70.—f, 34.50.Ez

I. INTRODUCTION

The electronic energy-transfer process is important in
such diverse areas as the excitation of the rare-earth laser
[1], organic photochemistry [2] and photosynthesis [3-8].
For example, carotenoids provide photoprotection by
rapidly quenching chlorophyll triplet states which are
formed in antenna systems or photosynthetic reaction
centers. This triplet-triplet energy transfer prevents
chlorophyll-sensitized production of singlet oxygen,
which is injurious to organisms [3]. In addition, caro-
tenoids act as antennas by absorbing light in spectral re-
gions where chlorophyll absorbs weakly and by delivering
the resulting excitation to chlorophyll via a singlet-singlet
energy-transfer process [4]. Finally, first excited singlet
states of chlorophyll are quenched by nearby carotenoids
[5]. This quenching has been ascribed to energy transfer
[6], electron transfer [7], or to some other process leading
to internal conversion, and may play a role in the regula-
tion of photosynthesis [8].

Energy transfer can be roughly divided into in-
tramolecular transfer and intermolecular transfer. Re-
cently, more and more effort has been devoted to in-
tramolecular energy transfer. There are two important
aspects of intramolecular energy transfer. The first im-
portant aspect is that intramolecular transfer is indepen-
dent of diffusion since it takes place between different
components of a single molecule; the energy-transfer rate
can be monitored directly. In this case, solvents may still
affect the energy-transfer rate by an alteration of driving
force and/or through the intervention of low-frequency
solvent vibrational modes (i.e., reorganization energy).
The second aspect of intramolecular energy transfer is
that various parameters such as driving force, distance
between donor and acceptor, and the orientation of donor
with respect to acceptor, etc., which determine the
energy-transfer rate, can be very well controlled by
designing various kinds of model compounds [9]. Energy
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transfer may also be divided into singlet-singlet transfer
and triplet-triplet transfer, etc., depending on the spins of
initial and final states, and direct and indirect transfer de-
pending on whether the intervening spacer is involved in
transfer or not. Recently, intramolecular transfer under
collision-free conditions has been observed by Speiser and
co-workers [10]. They have studied the energy transfer
of donor-acceptor (D-A) pairs such as benzene-biacetyl
and naphthalene-anthracene in a supersonic jet expan-
sion.

A direct-energy-transfer theory was worked out by
Forster [11] for singlet-singlet transfer and by Dexter [12]
for triplet-triplet transfer more than 40 years ago. It pre-
dicts the following:

(a) While for singlet-singlet energy transfer, both
dipole-induced (Coulombic) interaction and exchange in-
teraction are nonvanishing; for triplet-triplet energy
transfer, only exchange interaction exists.

(b) The rate of dipole-induced transfer decreases as
R ~® whereas the rate of exchange-induced transfer de-
creases as exp(—2R /L), where R is the donor-acceptor
separation.

(c) The rate of dipole-induced transfer depends on the
oscillator strengths of D*—D and 4 — A* radiative
transitions, but the rate of exchange-induced transfer
does not depend on either of the two oscillator strengths.

Notice that in the Forster-Dexter theory, the energy-
transfer rate is expressed as a function of spectral over-
lap. The theory is inconvenient to use (1) when it is used
to interpret the effects of driving force, temperature, and
solvent on the energy-transfer rate since such information
is buried in the spectral overlap, and (2) when the spectral
overlap is too small to measure. Realizing the similarities
between electron transfer and energy transfer, Sigman
and Closs [13] have recently applied the electron-transfer
theory to analyze the experimental data of energy-
transfer rates. However, ignorance of the application
conditions of the theories may lead to inappropriate con-
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clusions. In other words, it is necessary to derive the
energy-transfer theory in the framework of radiationless
transition and discuss various factors which affect energy
transfer.

Also notice that in the original derivation of the
Forster-Dexter theory, continuum initial and final states
were assumed. However, in molecular systems this as-
sumption is not necessary and even inappropriate since
the states in molecules are usually discrete or quasicon-
tinuous. Therefore, a derivation of the Forster-Dexter
theory based on discrete states or on a quasicontinuum is
necessary, although the conclusions may remain the
same.

Although the direct-energy-transfer theory is well un-
derstood, recent experiments clearly indicate that in-
direct energy transfer also plays a very important role in
energy transfer. For the case in which the donor-
acceptor separation is large, indirect transfer may be the
dominant mechanism responsible for energy transfer.
For example, Gust et al. [9] have studied the quenching
of the porphyphrin triplet state by energy transfer to the
attached carotenoid. Both donor and acceptor are at-
tached to the benzene ring. Only the exchange interac-
tion exists in this case since in triplet-triplet transfer the
Coulombic interaction is spin forbidden. Although R
(6.5 A) is much larger than L (1.5 A), and thus the direct
energy transfer is small, the energy-transfer rate is still on
the order of 107 s~!. They have also found that the com-
pounds with D and A4 in the meta positions have the
slowest energy-transfer rate (one order of magnitude
slower) than those with D and A4 in the ortho or para po-
sitions. These are clear indications of the superexchange
mechanism. Therefore, extension of the intramolecular
energy-transfer theory to include the superexchange
mechanism becomes necessary.

The purpose of this paper is as follows:

(1) To develop both direct- and indirect-energy-transfer
rates in the framework of radiationless transition. The
dependence of the energy transfer on driving force, dis-
tance, and solvent will be discussed. Special attention
will be paid to the indirect energy transfer.

(2) To derive the generalized Forster-Dexter energy-
transfer theory for systems which have discrete or
quasicontinuous initial and final states.

II. GENERAL THEORY

In the Schrodinger picture, the time evolution of a sys-
tem is described by

ﬁzp(t):mi"é—(tﬂ , 2.1

where A and ¥(t) denote the Hamiltonian and wave func-
tion of the system and A= H0+V Depending on the
choice of basis sets (determined by ﬁ V may represent
the interaction for inducing mtramolecular energy
transfer (IET). In most cases, V is due to the electron-
electron interaction. The transition rate for i — f is given
by [14]

—%I<¢f1?l¢f>lla(Ef—E,-) , (2.2)

where T denotes the transition operator.

T= V+V—1——V=
—B+ie

y+7@ (2.3)

and

T‘2’=V—1A—-—V ) (2.4)
E,—HA+ic

It should be noted that for the case in which the system
is embedded in a heat bath, € describes the dephasing of
the system. A main purpose of this paper is to examine
the role of T ) in the photoinduced intramolecular ener-
gy transfer taking place between donor and acceptor
groups. In particular, we are concerned with the effect of
intermediate groups (i.e., bridge groups or spacers) con-
necting the donor and acceptor groups. In the conven-
tional Forster-Dexter theory of energy transfer, T %) has

been neglected. In the lowest approximation ?(2) is
given by
po—py_ L 2.5)
E,—H,+ie
and we find
Vim Vi
Pl=3 Sm m (2.6)
fi % E,—E, +ic,,

In applying Eq. (2.6) to photoinduced IET the intermedi-
ate virtual states |m ) may represent the excited electron-
ic states of the connecting group, i.e.,

D*CA—DC*4—>DCA* . (2.7)

In molecular systems, the adiabatic approximation can
be used as a basis set. If the vibrational relaxation is
much faster than energy transfer, then vibrational equi-
librium is established before energy transfer takes place;
in this case the thermal average IET rate constant is ex-
pressed as

2
Wfi=722Piv|(¢fv”
v v

v *S(Es . —E,), (2.8

where P;, denotes the Boltzmann factor and (i, f) and
(v,v"’) represents the electronic and vibrational states, re-

spectively.
Notice that

<¢fu”; ?w)iv ) = va”,iu + < 1/’fu”l ? (Z)WJ;'U ) ’ (2.9)

and that in the lowest approximation,
| ST
<¢ . ) ): Sfv'' my n.w,w ) 2.10)
o m%’ Eiu _Emv’+l£mv',iv

where, for example,

Vfu”,mv’:<¢fv”|V|¢mu’> (2.11)

In the adiabatic approximation, ¥;,, ¥, and ¥, can be
written as products of electronic and vibrational wave
functions, i.e.,

11b =P, ew’ 1/}mv’zq)memu’f ‘djfv”:
Substituting Eq. (2.12) into Eq. (2.9) yields

PO, (2.12)
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W Tl =(O V10,0 + 3

where, for example,

Vi=(@ VD) . (2.14)

Under collision-free conditions (i.e., for an isolated
molecule), the IET rate constant depends on the excess
vibrational energy (in general, rotational-vibrational ener-
gy). In the collision-free condition, there are two types of
IET rate constants. One is the so-called single-level rate
constant [15],

W,-v=%;1 S K| Tl YIP8(E e —Ey,) . (2.15)

This case refers to the situation in which the intramolecu-
lar vibrational relaxation (IVR) is slow so that the IET
takes place from the prepared single-vibronic level iv. On
the other hand, if the IVR is much faster than the IET,

then we have the so-called microcanonical rate constant
[15],

WE)=2T 5 5 P (E) (| P15, Y 8(E =)

" 2.16)
where P,,(E) denotes the microcanonical distribution,
Py (By= Tl 2.17)
v pi(E)

and p,;(E) represents the density of the states of the sys-
tem with vibrational excess energy E,

PI(E):ZS(E_EIU) . (2.18)

These cases will be treated in the following sections.
Next, we consider the electronic matrix elememts in-
volved in IET. For singlet-singlet transfer, we have [15]

Ip*Ccla—-'DCla*, (2.19)
q’i:%(]XBLXD_*XIXﬂ—|X5Xg*XJX,II), (2.20)
and

(Df:‘—/lzz'”Xng;XjX;*|_|XBLX5X;X:*|), (2.21)

where, for example, |X; X +X X 7| denotes the Slater
determinant with molecular orbitals X, X D and X .

Here, for convenience, other molecular orbitals (MQO’s)
not involved in energy transfer (from the excited state de-
scribed by the MO X . of D to the excited state de-

scribed by the MO X  « of A) are not given. In this case,
V is given by the electron-electron interaction

r=33<
o ery

ij

(2.22)

where € denotes the dielectric constant of the solvent.

Eiv _Emv'+l€mu’,iv

> (2.13)
[
For the IET under collision-free conditions, e=1.
Using Egs. (2.20)-(2.22), we obtain
e?
Vf,'=2<XDXA* :r—; XD*XA>
2
—<XDXA* o XAXD*> : (2.23)

Here, the first term represents the Coulomb interaction,
while the second term represents the exchange interac-
tion. In the conventional Forster-Dexter theory, the ex-
change term is neglected and the multipole expansion is
introduced in the Coulomb term assuming that D and A4
are well separated so that the electronic distributions of
D and 4 do not overlap. In this case, V; takes the form

V. = 1 (p o4 )— 3(Rp.4pp)Rp_ 41 4)
fi €R13)_A Hp A Rlz).A )

(2.24)

where p, and p, denote the transition moments of D
and A, respectively,

“D=1/_2_(XD|er|XD*> (2.25)
and
Ba=V2X uler|X ) . (2.26)
Next, we consider the triplet-triplet transfer,
S\p*Cc'4—'DC34* . (2.27)

To obtain V;, we consider only the spin state of M; =1,
ie.,

O,(M,=1)=|Xy X XX | (2.28)
and
O (M=1)=|Xp Xp XX Tl . (2.29)
It follows that
e2
Vfi:—<XD*XA 6712- XA*XD> . (2.30)

That is, only the exchange interaction is involved in the
triple-triplet transfer of IET.

III. IET IN DENSE MEDIA

In the original Forster-Dexter theory, continuous ini-
tial and final states are assumed. However, for IET it is
more convenient to treat initial and final vibronic mani-
folds as quasicontinua. For direct IET we have,

27
Wp=" 23 Py |{Opn

v v

Vfi |eiv ) |28(Efv”—Eiv) .

(3.1
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In a previous paper [16], we have shown that by using the
expressions for the absorption coefficient of A4,

47’0

3atic

X3P, {0 s 1 410,) 280y 1= @), (3.2)
v v

aA((l)):

and for the normalized emission spectral distribution
function of D,

40%a'r
3¢3

ngP,.U|<9,U,,|,¢Dlem)|28(w—wiu,fv.,). 3.3

Ho)y=

W ; for the singlet-singlet transfer can be expressed in the
spectral overlap [15,16],

4

3ac o do
= —— —a(w)(o)y . (3.4)
d 4ma’'e®R§_ 4 7p f—w ot ! N

In Egs. (3.2)-(3.4), a and a’ are introduced to take care of
the solvent effect on absorption spectra and emission
spectra, respectively, while 7, denotes the natural (or ra-
diative) lifetime of D *.

Similarly for the triplet-triplet transfer, we introduce

the normalized distribution functions for absorption of 4
and emission of D defined by [15,16]

O'A(Cl))z 2 EPiy|<efu"|eiv ) |28(wfu”,iv —w)
ay(w)/o

w aylw)
f do >

— 00

np(@)= EEPW|<9f,,~Iew)|28(m @y, o)
v v

I{o)y/o®
_w—Na)w (3.6)

feo CL))N

|sz|2fw

Expressions such as Egs. (3.5) and (3.6) hold only if the
electronic transitions are dipole allowed.

As mentioned above, for the case in which the absorp-
tion spectra of 4 and emission spectra of D do not over-
lap significantly, the expression of the IET rate constant
in terms of the spectral overlap is not convenient to use.
Furthermore, the IET rate constant in this case is not ex-
pressed in terms of microscopic molecular properties.

Suppose that the energy difference between intermedi-
ate (or virtual) electronic E,, and E; is much greater than
vibrational energies. In this case, we can use the Placzek
approximation to Eq. (2.10) and find

Vi Vi
Vf: + 2 E—fm_—Eﬂ eiu>

=(0,,.T;18,) . (3.8)

to obtain

omplo)do . (3.7)

<¢fv”|?|¢iu ) =<efu'

Using the Condon approximation, Eq. (3.8) becomes
<¢fv”|?l¢iv >:Tfi<efv”|eiu > ’ (3.9)

where (©/,.|©,,) denotes the vibrational overlap in-
tegral.
It follows that

2
W= TS 3 Py (0,010, ) P8(Epy — Eyy)

(3.10)

where [(©,,.|6,, )|? denotes the Franck-Condon factor.
Equation (3.10) indicates that the IET can be treated
within the framework of radiationless transitions. The
advantage of this type of treatment is that the IET rate
constant is expressed in terms of microscopic molecular
properties and can easily be used to study the tempera-
ture effect, energy-gap dependence, and isotope effect
[17]. One should also notice the similarity between IET
and photoinduced intramolecular electron transfer.

Using the integral representation for 8(Es,»—E;, ), Eq.
(3.10) can be written as [17-19]
1 o .
Wn=—5ITsl? [ 7 dtexplito) [T G() (3.11)
J

where

G(1)=3 ZP,U I(X ,,|Xw )|%exp

v, pl’
)

it
—(E ,—E ,

(3.12)

where |(X fv,,lX i, Y|? denotes the Franck-Condon factor
j

for the jth vibrational mode. G;(z) has been evaluated
for the cases of displaced harmonic oscillators, and
displaced-distorted harmonic oscillators and of displaced
anharmonic oscillators.

For displaced harmonic oscillators, G;(#) is given by

—itw;

QA+ D=7+ De T —me )],
(3.13)

G;(t)=exp[—S

where 71; = [exp(fio; /kT)—1]" ! and S; denotes the cou-
pling constant (or Huang-Rhys factor) related to the vi-
brational coordinate displacement AQ; by
S;=(w; /2#)AQ}.

Recently Sigman and Closs [13] have also used Eq.
(3.10) to study IET. In their paper, they consider two vi-
brational modes in (©,|6;, ), one high-frequency mode
and one low-fregency mode. For the high-frequency
mode, they evaluate the Franck-Condon factor
|<va,,|X,~Uj)|2 exactly for v;=0 and for the low-

J

frequency mode w; they evaluate the Fourier integral in
Eq. (3.11) by the short-time aproximation (i.e., the
strong-coupling case S;>>1) and assume that
#iw; /kT <<1 (i.e., the high T case).

Notice that substituting Eq. (3.13) into Eq. (3.11) yields
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1 o
Wf,.=-h-2—|Tﬁ12f‘wdt exp (3.14)

iton— 38;((2,+ 1) (7, +1)e " —me ") ] .
J

It is a good approximation to evaluate the Fourier integral in W; by the saddle-point method (or method of steepest
descent) [15],

172
Wy=-51T,1 = 4
fi h2 fi it*o, —it*o,

SSei{(A;+1e Ve 7

j
. % ik .

Xexp |it*o,;— 3 8;20,+ 1)+ 3 S, (7, + e “+me " “’f}] , (3.15)
j J

where t* denotes the saddle-point value of the ¢ to be
determined by

I 3 e

wp=3 S0+ T—me" 1. (3.16)
j

Numerical demonstrations of Eq. (3.15) will be given in

Sec. VI.

It should be noted that the summation over j in Egs.
(3.15) and 3.16) covers the vibrational modes in both 4
and D. Using Egs. (3.15) and (3.16), we can determine
how the electronic excitation energy is distributed after
the IET takes place. For example, if there are only two
modes involved in IET, one for 4, say o, and one for D,
say w;, and if §; =5 and S; =0.1, then we can expect that
the vibrational excitation energy stays at D while A4, al-
though electronically excited after IET, is vibrationally
unexcited if A is initially vibrationally unexcited.

It is often useful to consider a single-mode case. This
is also equivalent to the multimode case of using average

S; and @;. In this case, W is given by
W= ﬁi’- |Tf,|2 —S@r+1)
. m lf/m)
> (Sm)"[s(mr+1]" ' (3.17)
m=0

m!
w

which should be computed with the saddle-point approxi-
mation of W,

1 27 12
W=—|T;? : _
TR | ser(+ et o e~ o)
Xexplit*o,;—S(2n+1)
+S(A+1)e o+ sme "] (3.18)
where
eit*m wifzsm
(F+1)
© 2 1/2
L 2 famam) (3.19)
2Aa+1) || Se

It should be noted that Eq. (3.17) can be put in the form
of the modified Bessel function [20].

IV. IET IN ISOLATED MOLECULES

As mentioned in Sec. II, there are two types of IET
rate constants for an isolated molecule (i.e., ion the
collision-free condition). We first consider the single-
vibronic-level case,

2
W,.U:»’%Znﬂlzg 1€(8/,:10,,)|38(E ;. —E,,) , 4.1)

which can be rewritten as

W, = |Tf,|2 [- dre ”‘”ﬂHG 4.2)

where

=3NKx fvj,,|x,.uj )|%exp (4.3)
o)
7

it
# By Ey

For the case of displaced oscillators, G, (¢) has been
J
evaluated as

G/( )=exp[—S; (1—e" )

2 it i

(1/2)ite, —(1/2)itw, n,
J—e

X[S;(e 2T (4.4)

In particular, if v; =0, then
t)——exp[— (1—e wj)] 4.5)

and

1 0
Wioz};ﬂTﬁwamdt exp

itwfi—zsj(1-ei’”f)] :
J

(4.6)
Using the saddle-point method, Eq. (4.6) becomes
1 , o 172
Wio=27 1Tl P
E S Ja)

Xexp

it*o,
it*0,;,—3 S;+3 8" “’f] , @
j J
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where

*
lf ES (U e i . (4.8)

It should be noted that W, also corresponds to the
thermal average IET rate constant at T =0.
Substituting Eq. (4.4) into (Eq. 4.2) yields

W, =—|Tf,|2f dtexp itwg— ZS (1—e")
XTI @Uj(t) , (4.9)
J
where
_ Uj v;!
G, (= 3

nizonl(v;—n

(1/2)itwj —(1/2)itw ; —n

J )2] i,
(4.10)

) does not vary significantly around ¢*, then

If I1,G, j
Eq. (4. 9) can be evaluated as

We G, (1*)
—_— t
7

(4.11)

where t* is given by Eq. (4.8).

Next we consider the evaluation of Wj;(E), the so-
called microcanonical IET rate constant. Using the con-
tour integral representation for the 8 function,

_ 1 B(E—E,)
B(E —E;)=> fche 4.12)
we find
—_1 BE()
piE)=—— [ dBeP"Q,(B) , 4.13)
where
=Se P, (4.14)

which is the canonical partition function of the initial
electronic state. Similarly, W;(E) can be expressed as

WAE ———f dBePE (4.15)

p:(E) 2mi Q(BIW (B,

where W, () denotes the thermal average IET rate con-
stant given by Eq. (2.8).

Equation (4.13) indicates the p;(E) is related to Q;(B)
by the inverse Laplace transformation. Similarly, Eq.
(4.15) shows that W {E) is related to Q;(B)W(;(B) by the
inverse Laplace transformation. Applying the saddle-
point method to Eq. (4.13) yields

eP*EQ,(B*)
217( B*zanl(B* }

where B* denotes the saddle-point value of B* to be deter-

T (4.16)

mined by

InQ;(B*) (4.17)

aB*
Equation (4.17) indicates that 8* plays the role of “tem-
perature” in the isolated system.
If Q;(BYW;;(B) does not vary significantly around 8%,
then Eq. (4.15) can be evaluated as

WAE)=W{B*)

Equation (4.18) indicates that for the case in which the
IVR is much faster than IET, W ;{E) can be approximat-
ed by W,{B*) with B* to be determined by E given by
Eq. (4.17).

The single-vibronic-level IET rate constant W, can
also be expressed in the spectral overlap form. For

singlet-singlet direct transfer, Eq. (4.1) becomes

(4.18)

W __2177,40

w

(e(D) eg))) 2
s SIOuslel?)]

Xl(e(A)IF'A Ies'uA))IzS(Efv”_Eiu) s

(4.19)
where 77 4 p, describes the relative orientation between the
A group and the D group.

Notice that the single-vibronic-level
coefficient for A4 is given by

absorption

()= 477 T (4.20)

2|<G(A)|”A|6(A)>|25 wfv ) .
v
It follows that

(4)
w ap (@) . 2 o'

f —_- e”“’da)—————4v 2 o, '”I(O(A)MAIO‘A)HZ
— o0 (0]

3fic
4.21)
and that
1 Map
T RS,
Xzf dt[ ’wfv ‘”|<6(D)|,uD|9f~f)>|2]
X[eztwfv",iu“e(f,:,)’“/!'egvA))P] (4.22)

Here the integral representation of the & function has
been used.
Substituting Eq. (4.21) into Eq. (4.22) yields

_ 3 ’724-0
v 27# RB.A

® w)
xf_ dw.a__w_

(0]

x;|<e Np 0P 128(0— (2, .

(4.23)

Using the normalized intensity distribution function of
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the single-vibronic-level emission of D,

403
(D) = 0
Iiv (w)N 3ﬁc3Ai(vD)
x2|<e D80 =0y, . (4.24)
Eq. (4.23) becomes
4 0
_ C 77,41) d(l) (A )I(D)( )N, (425)

0 g D 87riD) RS 47V -= o*
where 7' ) denotes the single-vibronic-level (iv) radiative
lifetime of D. The W, for triplet-triplet transfer can also
be expressed in the spectral overlap in a similar manner.

V. EFFECT OF BRIDGE GROUPS ON IET

As can be seen from Secs. II and III, the effect of
bridge groups on IET is described by T7, i.e.,

Vi Vi

TR=3 fnm 5.1

i % E—E, (5.1)

Properties such as ®,,, E,, of intermediate (or virtual)
states are usually determined by the bridge groups.

In most cases, no general expressions can be obtained
for T!? except for the case in which all the bridge groups
are equivalent, i.e., DC;C, -+ Cy A. In this case, ®,,
can be expressed as

N
=2 Combn > (5.2)
n
where ®,=D*C,C, - CyA4, ®,=DC,C, """
and, for example, $, =DCC, - - Cy A.

The theory of molecular excitons can be applied to this

case. We find

CyA*

5 1/2
_ mnw
Com= N x1 NIl (5.3)
and
E!9=a+2Bcos Nfl ] , (5.4)
where m =1,2,...,N, a=H;,=H,,= -+ =Hyy, and
B=V,n+1=Vu—1- It follows that
_1 mo:. 2 mar
8.8, N (—1)™sin N1
Tfl:Vfi 2 ’
N+1 = (e) m
(a—Ei )+2B cos N1
(5.5)
where
i 1 i (56)

Bf:<q)f|V|¢N>

It has been shown that for the case of (a—E/¢)?>>/,
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Eq. (5.5) reduces to

BiBBY !

— _1\v 2!
Tp=Vpt(=DY iy (5.7)

VI. DISCUSSION

To demonstrate the application of the theoretical re-
sults given in the prevous sections, in this section we shall
present some numerical results. First we shall show the
dependence of W/, on the electronic energy gap (or free-
energy change). This is shown in Fig. 1. In Fig. 1(a), we
show the single—mode case at 300 K; that is, S =2.5 and

=100 cm~'. In Fig. 1(b), we show the multimode case.
Here we choose six modes; w; =100, 224, 750, 1200, 1400,
1520; S;=2.5, 0.03, 0.02, O. 03 0.02, 0.04; w; is in the unit
of cmfl. These six modes are commonly observed in
chlorophylls.

In Fig. 2, we show the temperature effect on IET for
the single-mode case. In this case, the temperature effect

1000 : T r T T T
(a) single mode
800 |- temperature i
— 300 K
~
2 eo00} e
c
3
e
[
S 400} .
=
200 - .
o 1 1 1 1 1 1
—2000 -—1500 —1000 —500 [ 500 1000 1500
. -1
free-energy difference (cm )
700 T T T T T T
(b) muiti—mode
600 |- temperature 7
Py —— 300 K
0 500 ]
bod
c
3 400 E
a
T 300 i
o
N~—
= 200 .
100 4
o 1 1 1 1 1
—2000 -1500 —1000 —500 o 500 _ 1000 1500
free-energy difference (cm )
FIG. 1. Energy-gap dependence of Wj. (a) Single-mode

case. (b) Multimode case.
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depends greatly on the electronic energy gap (or free-
energy change). In Fig. 2(a), we show the case of S =2.5
and »=100 cm !, while in Fig. 2(b) we show the case of
S =30and ©=100 cm ™.

In Fig. 3, the temperature effect on IET for the mul-
timode case is shown. In this case, the temperature effect
is weak and does not change significantly with the elec-
tronic energy gap. Here the above-mentioned six modes
are used. As can be seen from Fig. 3, for energy gaps
below 1000 cm ™! the IET exhibits the inverse tempera-
ture dependence. Near 1000 cm ™!, the IET is indepen-
dent of temperature. Above 1000 cm ™! the IET begins to
show the normal temperature dependence.

Recently, Bigman, Karni, and Speiser!® have reported
some preliminary results of electronic energy transfer be-
tween benzene and biacetyl, and between naphthalene
and anthracene in a supersonic jet expansion. Excitation
of several vibronic levels of benzene (donor) in the pres-
ence of biacetyl (acceptor) shows quenching of benzene
emission with simultaneous appearance of biacetyl
fluorescence emission. Similar results for the pair of na-
phthalane (donor) and anthracene (acceptor) have been
observed. Several single-vibronic-level energy-transfer
rate constants for the benzene-biacetyl pair have been re-
ported.

30 T T T T T

(a) s=2.5
free-energy difference
—  -250 cm’,
—- =500 cm_,
20+ —- =750 em_,
--- —=1000 cm_,
©rr —1250 em_,
—- —1500 cm

w(T)/W(0)

5} J
0 A — — e
o 50 100 150 200 250 300
temperature (K)
50 T T T T T
(b) s=30
40l free-energy difference |
— —250 om_,
—- =500 em_
30} — - =750 cm ] 1
-=- —1000 em_,

—1250 cm

20 -

w(T)/w(0)

- ————

1
0 50 100 150 200 250 300
temperature (K)

FIG. 2. Effect of temperature on W/;: single-mode case. (a)
§=2.5. (b) §=30.
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0 50 100 150 200 250 300

temperature (K)

FIG. 3. Effect of temperature on Wj;: multimode case.

We can apply the theoretical results in Sec. IV to inter-
pret the results by Bigman, Karni, and Speiser. If only
one mode is vibronically excited in D, then Eq. (4.11) be-
comes

Wi —G %)
W, Yk )

1

6.1

Here, it is assmed that the kth mode of D is excited. No-
tice that if v, =1, then

Wi =1+Sk(e1/2it*wk_el/2it*wk)2 , 6.2)
Wi
and that if v, =2, then
L/Vi_z_=2+2sk(el/2it*wk_e1/2it*mk)2
Wio
Va2, 122it%0,  172it%0)
+1Si(e —e 7, (6.3)

etc.
Similarly, if two modes are vibronically excited in D,
then Eq. (4.11) becomes

iv =

=G,,k(t*)G,,1(t*).

(6.4)
i

For the benzene-biacetyl pair, Bigman, Karni, and
Speiser have obtained

ko(67)

——-=3.00. (6.5)

ko (6g)

Using Egs. (6.2), (6.3), and (6.5) we obtain
it * — it*w

Sp(e! Ok TIH kg 73 (6.6)
for the wg mode of benzene. In other words, we find

ky(6))

—2 % —3 6.7)

ko(6g)
and

ko(67)

€ L —142 (6.8)
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That is, using Eq. (6.6) we can predict other single-
vibronic-level quenching rate constants associated with
the wg mode. Of course, it should be noted that the
above anlaysis is based on the assumption that the wg
mode is a displaced oscillator. Other types of oscillators
can be treated similarly.

Next we turn to the IET systems studied by Gust et al.
In this case, both donor and acceptor are attached to a
benzene ring. From Eq. (5.7), for N =1 we have

BBy

a—E,-‘E)

where B, =(¢;|V|®,) and B, =(®/|Vl$,). Due to the
fact that in the ortho, para, and meta substitutions, ¢,
will be somewhat different in these substitutions, 3; and
3, will be different for the ortho, para, and meta substi-
tuted DCA systems, and, hence, the IET rates will be
different for these systems, but the differences are not
large as shown by the experimental results.

An important feature of using the saddle-point method
is that under collision-free conditions it will provide ap-
proximate information regarding the distribution of the
initial electronic excitation energy in D and A after IET
[21]. We can then study the IVR by using the transient
absorption technique.

In conclusion, in this paper we have generalized the

Tp=Vgy— ) (6.9)
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Forster-Dexter theory to treat IET. Instead of expressing
the IET rate constant in terms of the spectral overlap, we
have expressed it in terms of molecular parameters such
as the electronic energy gap (or free-energy change), nor-
mal coordinate displaceent (or coupling constants), and
normal frequency changes so that it can be used to study
explicitly the effect of energy gap, temperature, and iso-
tope on IET’s. We have investigated the case of IET tak-
ing place in dense media and the case of IET taking place
under collision-free conditions. Due to the fact that the
saddle-point method has been employed to evaluate the
Fourier integral involved in the Fermi-golden-rule ex-
pression of IET rate constants, the information on the en-
ergy distribution in the product after IET can be ob-
tained and the multimode case can be treated. We have
also studied the effect of bridged groups on IET.
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